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Abstract. In this communication we propose the use of the augmented-space recursion as
an ideal methodology for the study of electronic and magnetic structures of rough surfaces,
interfaces and overlayers. The method can take into account roughness, short-ranged clustering
effects, surface dilatation and interdiffusion. We illustrate our method by an application to an
Fe overlayer on a Ag(100) surface.

1. Introduction

Magnetism at surfaces, overlayers and interfaces has evoked much interest in recent times
[1]. The chemical environment of an atom at a surface or in an overlayer is very different
from that in the bulk. The difference in environment, the existence of surface states and
the hybridization of the states of the overlayer with those of the substrate can give rise to
a wide variety of new and interesting material and magnetic properties. This wide variety
has the potential for providing the basis for surface materials design. This is the underlying
reason for the absorbing theoretical interest in this field.

In this communication we wish to argue that the augmented-space recursion (ASR)
introduced by us earlier is one of the most suitable techniques for the study of rough
overlayers and interfaces.

First-principles all-electron techniques for the determination of the electronic structure
based on the local spin-density approximation (LSDA) have made reasonably accurate
quantitative calculations possible. Originally, the most popular of the methods were the
parametrized tight-binding and the linear combination of atomic orbitals (LCAO) [2].
However, the facts that the parametrized Hamiltonian is, in general, never transferable
and that the basis does not have sufficient variational freedom have led to the eclipse of
such methods for quantitative calculations—in particular, of properties as sensitive to the
assumptions as the magnetic moment. There have been attempts at resuscitating the LCAO
method by introducing ideas of environment-dependent parametrization [3]. The generally
accepted quantitative techniques include the augmented-plane-wave (APW) technique and
its linearized version (the LAPW technique) [4] and the Korringa–Kohn–Rostoker (KKR)
method and its linearized version (the LMTO method) [5]. The two basically related methods
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come both in full-potential versions, where no assumption is made about the shape of the
charge density or the potential, and in spherically symmetrized muffin-tin-potential versions.
The electrons may be treated either semi-relativistically or fully relativistically [6]. In
addition, Andersen and co-workers [7] have proposed a tight-binding LMTO (TB-LMTO)
method in which the real-space representation of the Hamiltonian is sparse. Which of the
two basic methods we choose often depends on personal taste and history. Moreover, how
far we wish to go down the ladder of different approximations is guided by the accuracy
required and the computational burden that we wish to face. We would not like to comment
on this, other than justifying the choice of the specific technique that we have chosen for
ourselves.

The other important aspect of the problem is the loss of translational symmetry
perpendicular to the surface. This aspect has been dealt with by different authors in different
ways:

(i) finite-slab calculations, which assume that finite-size effects are negligible [8];
(ii) supercell calculations, where the translational symmetry is restored; each supercell

has a replica of the finite system and the assumption is that the supercells are large enough
not to affect one another;

(iii) the slab Green function method where the translational symmetry parallel to the
surface is utilized and the perpendicular direction is treated in real space [9–11]; the
embedding method of Inglesfield [12] belongs to this group, where the Green function
of the semi-infinite solid is calculated by folding down onto this semi-infinite subspace;

(iv) the fully real-space-based recursion method [13] which does not require any trans-
lational symmetry and was originally developed for dealing with surfaces and interfaces.

Overlayers produced by molecular beam epitaxy and other vapour deposition techniques
are, by and large, rough. Local probes, such as STM techniques, reveal steps, islands and
pyramid-like structures. Moreover, there is always interdiffusion between the overlayer
and the substrate leading to a disordered-alloy-like layer at the interface. This brings in
the last important aspect of the problem: roughness or disorder parallel to the surface.
A majority of the theoretical work done on surfaces and overlayers so far had always
assumed flat layers. Such studies generally involve the use of surface Green functions,
G(k‖, z), which allow the breaking of translational symmetry perpendicular to the surface,
but presume such symmetry parallel to it [9, 10]. Roughness has been introduced in
overlayers by randomly alloying them withempty spheres[11]. Such alloying has been
assumed to be homogeneous and has been treated within a mean-field or the coherent
potential approximation (CPA). Attempts at going beyond the CPA have not generally been
successful. One of the more successful approaches in this direction is the augmented-
space formalism (ASF) [14] and techniques basically based on it, like the travelling-cluster
approximation (TCA) [15].

Let us now explain why we wish to advocate the augmented-space recursion based
on the TB-LMTO as an attractive method for the study of rough surfaces, overlayers or
interfaces.

The CPA has proven to be an accurate approximation in a very large body of applications.
Why then do we wish to go beyond it? We should recall that the CPA isexactwhen the
local coordination is infinite. Its accuracy is inversely proportional to the local coordination.
We therefore expect the CPA to be less accurate at a surface as compared with the bulk
calculations. Furthermore, the CPA basically describes homogeneous randomness. It cannot
accurately take into account clustering, short-ranged ordering or local lattice distortions, of
the kind that we expect to encounter in the rough surfaces produced experimentally. The
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ASF allows us to describe such situations exactly, without violating the so-called ‘herglotz’
properties which the approximated averaged Green function must possess [16].

We shall combine the ASF with the recursion method to calculate the configuration-
averaged Green functions. We should note that the augmented-space theorem isexact[16]
and that the approximation involves terminating the recursion-generated continued fraction.
Analyticity-preserving ‘terminators’ have been introduced by Haydock and Nex [17] and
Luchini and Nex [18]. Recently Ghoshet al [19] have discussed the convergence of
the augmented-space recursion and indicated how to generate physical quantities within
a prescribed error window. The recursion method, being entirely in real space, does not
require any translational symmetry and is ideally suited for systems with inhomogeneous
disorder. However, for the recursion method to be a practicable computational technique, we
must choose a basis of representation in which the effective Hamiltonian is sparse, i.e. short
ranged in real space. The best choice of a computationally simple yet accurate basis is the
TB-LMTO one. This is what we describe in this communication. However, the screened
KKR method [6] would be a more quantitatively accurate choice. We would require the
energy-dependent extension of the recursion method. This has been developed recently [20]
and its application to the screened KKR method will be described in a subsequent commun-
ication.

To illustrate the method, we shall take a well-studied example: that of Fe deposited on
the (100) surface of a Ag substrate. The lattice parameter of bcc Fe, the most common
ferromagnet [21], matches the nearest-neighbour distance on the (100) surface of fcc Ag (half
the face diagonal), a very good non-magnetic electrical conductor. This favours epitaxial
deposition of bcc Fe on Ag(100), manifesting interesting magnetic properties.

Before describing the methodology in some detail, we need to clarify the following point:
in order to describe inhomogeneous disorder we have taken recourse to the generalized
augmented-space theorem [22]. This generalized ASF takes into account short-ranged order
through the Warren–Cowley parameter and yields an analyticherglotzapproximation. In
a recent publication [23] the authors make the unfounded statement that the generalized
ASF yields negative densities of states, and quote the work of Razee and Prasad [24].
The statement is untrue and the misconception should be cleared up. A careful reading of
the quoted article [24] will show that, in applying the generalized ASF, Razee and Prasad
use the Nikodym–Radon transform and write the joint density of states of the Hamiltonian
parametersP({εi}) as(

∏
p(εi))8({εi}). For homogeneous disorder,8({εi}) is unity, while

for inhomogeneous disorder, the authors expand the function as an infinite series involving
various correlation functions between the{εi} (the simplest two-site correlation can be
written in terms of the Warren–Cowley parameter). They then truncate this series after
a few terms. This extra approximation cannot guarantee the preservation of theherglotz
analytic properties and is the cause of the observed negative density of states in some
energy regimes. The generalized ASF described by Mookerjee and Prasad [22] does not
take recourse to such an approximation and has been shown to be exact. Approximation
then arises entirely due to the recursion termination—which has been shown to preserve the
herglotzanalytic properties.

2. The generalized augmented-space theorem

In this section we shall describe the generalized augmented-space formalism. The
Hamiltonian is a function of a set of random variables{ni} which are not independent,
so the joint probability distribution can be written in terms of the conditional probability
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densities of the individual variables as

p({ni}) = p(n1)
∏
k

p(nk|nk−1, nk−2, . . . , n1).

Each random variablenk has associated with it its own configuration space8k and, in the
case of correlated disorder, a set of operators{Mλk−1,λk−2,...,λ1

k } whose spectral densities are
the conditional probability densities of the random variable, dependent on the configurations
of the sites labelled as superscripts. Theλk label the configurations of the variablenk. The
configuration space of the set of random variables is the product9 = ∏⊗k 8k. What the
generalized augmented-space theorem proved was that, if we define operators on this full
configuration space:

M̃k =
∑
λ1

∑
λ2

. . .
∑
λk−1

P
λ1
1 ⊗ Pλ2

2 ⊗ · · · ⊗ Pλk−1

k−1 ⊗Mλk−1,λk−2,...,λ1
k ⊗ I ⊗ I · · ·

then the configuration average of any function of the Hamiltonian is givenexactlyby

〈〈F({nk})〉〉 = 〈F 0|F̃({M̃k})|F 0〉. (1)

The average state|F 0〉 is defined by

|F 0〉 =
∏
k

|f 0
k 〉

|f 0
k 〉 =

∑
λk

√
ω
λ1,λ2,...,λk−1
λk

|λk〉

where the numbers under the root sign are the conditional probability weights for the various
configurations of the variablenk.

In our model, the random variables are the variables describing occupation of a site by
two different kinds of atom. The simplest model is one that assumes that the occupation of
the nearest neighbours of a site depends on its own occupation. The probability densities
are given by

p(n1) = xδ(n1− 1)+ yδ(n1)

p(n2|n1 = 1) = (x + αy)δ(n2− 1)+ (1− α)yδ(n2)

p(n2|n1 = 0) = (1− α)xδ(n2− 1)+ (y + αx)δ(n2)

wherex andy are the concentrations of the constituents andα is the Warren–Cowley short-
range-order parameter.α = 0 refers to the completely random case, in which the various
operatorsMλk−1,...,λ1

k become independent of the superscripts and the generalized augmented-
space theorem reduces to the usual augmented-space theorem.α < 0 indicates the tendency
towards ordering alternately, whileα > 0 indicates the tendency towards segregation.

The representations of the corresponding operators required are the following:

M1 =
(

x
√
xy√

xy y

)
M1

2 =
(

x + αy
√
(1− α)y(x + αy)√

(1− α)y(x + αy) (1− α)y
)

M0
2 =

(
(1− α)x

√
(1− α)x(y + αx)√

(1− α)x(y + αx) y + αx
)

P0
1 =

(
x

√
xy√

xy y

)
P1

1 =
(

y −√xy
−√xy x

)
.



The electronic structure of rough epitaxial overlayers 5771

3. The TB-LMTO-ASR formulation

Our system consists of a semi-infinite Ag substrate with layers of Fe atoms on the (100)
surface. We shall describe the Hamiltonian of the electrons within a tight-binding linearized
muffin-tin orbital (TB-LMTO) basis. As described earlier, we shall circumvent the problem
of the charge leakage into the vacuum by introducing layers of empty spheres containing
charge but no atoms. We shall roughen the topmost layer by randomly alloying the Fe atoms
with empty spheres. We shall allow for short-ranged order in the alloying. Segregation will
imply that the Fe atoms and empty spheres cluster together forming islands and clumps.
Ordering on the other hand will imply that Fe atoms ‘like’ to be surrounded by empty
spheres and vice versa.

Extensive details of the description of the effective augmented-space Hamiltonian have
been given in an earlier paper [25]. We shall indicate the generalization of the result for
the cases where nearest-neighbour short-ranged order is introduced as described above:

H̃ = H1Ĩ+ H2

∑
k

Pk ⊗ Pk↓ + H3

∑
k

Pk ⊗ {Tk↓↑ + Tk↑↓}

+ H4

∑
k

∑
k′

Tkk′ ⊗ I++αH2

∑
m∈N1

Pm ⊗ P1
↓ ⊗ {Pm↑ − Pm↓ }

+ H5

∑
m∈N1

Pm ⊗ P1
↑ ⊗ {Tm↑↓ + Tm↓↑} + H6

∑
m∈N1

Pm ⊗ P1
↓ ⊗ {Tm↑↓ + Tm↓↑}

+ αH2

∑
m∈N1

Pm ⊗ {T1
↑↓ + T1

↓↑} ⊗ {Pm↑ − Pm↓ }

+ H7

∑
m∈N1

Pm ⊗ {T1
↑↓ + T1

↓↑} ⊗ {T2
↑↓ + T2

↓↑} (2)

whereN1 is the set of nearest neighbours of the site labelled 1 on the surface, and for
calculations of the averaged local densities of states at a constituent labelledλ we have

H1 = A(C/∆)∆λ − (EA(1/∆)∆λ − 1)

H2 = B(C/∆)∆λ − EB(1/∆)∆λ

H3 = F(C/∆)∆λ − EF(1/∆)∆λ

H4 = (∆λ)
−1/2SRR′(∆λ)

−1/2

H5 = F(C/∆)∆λ

[√
(1− α)x(x + αy)+

√
(1− α)y(y + αx)− 1

]
H6 = F(C/∆)∆λ

[
y
√
(1− α)(x + αy)/x + x

√
(1− α)(y + αx)/y − 1

]
H7 = F(C∆)∆λ

[√
(1− α)y(x + αy)−

√
(1− α)x(y + αx)

]
(3)

A(Z) = xZA + yZB
B(Z) = (y − x)(ZA − ZB)
F (Z) = √xy(ZA − ZB)

C, ∆ andS are matrices whose elements are angular momenta;C and∆ are diagonal.
We note first of all that when the short-ranged order disappears andα = 0, the termsH5 to
H7 also become zero and the Hamiltonian reduces to the standard one described earlier [25].

This effective Hamiltonian is sparse in the TB-LMTO basis, but as the expressions show,
there is an energy dependence in the first three terms. This compels us to carry out recursion
at every energy step. However, Ghoshet al [20] have shown that the corresponding energy
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dependence of the continued-fraction coefficients is very weak, and if we carry out recursions
at a few selectedseedenergies across the spectrum, we may obtain accurate results by spline
fitting the coefficients over the spectrum.

For the self-consistent calculations we need to calculate the partial (atom-projected)
densities of states at various sites in different layers. This is done by running the recursion
starting from sites in different layers. We shall assume that beyond five layers from the
surface, bulk values are obtained. We checked that this is indeed the case, by comparing
the results for the fifth layer and those from a full bulk calculation. The Fermi energy of
the system is that of the bulk substrate, which we have taken from the bulk calculations. In
all cases we have used up to seven shells in augmented space and terminated the recursion
after eight to ten steps of recursion. We have used the terminator proposed by Luchini and
Nex [18]. As discussed in an earlier paper [19], we have made sure that the moments of the
densities of states converge as the number of augmented-space shells and recursions increase
to within a preassigned error range, which is consistent with the errors in the TB-LMTO
approximations. We have made the recursive calculations LDA self-consistent. For this
we had to obtain the radial solutions of the Schrödinger equation involving the spherically
symmetric LDA potential

V λp (r) = −2
Zλ

r
+ V λ,Hp

[
ρλ(r)

]+ V λ,XCp

[
ρλ(r)

]+∑
L

∑
q

ML
pqQ

L
q .

λ labels the type of atom,Zλ labels its atomic number andp labels the particular layer.
The second term in the equation is the Hartree potential, which is obtained by solving the
Poisson equation with the layer- and atom-projected charge densities. The third term is the
exchange–correlation term. For this term we have used the von Barth–Hedin form. In the
last term,

QL
p =

∑
λ

xλp

{ √
4π

2`+ 1

∫ s

0
YL(r̂)|r|`ρλp(r) dr − Zλδ`,0

}
.

Hereλ for the overlayer is either Fe or an empty sphere and the concentrationxλp is either
x or 1− x. For the substrate,λ refers only to Ag and its concentration is 1, while for the
charge layers outside the overlayer,λ refers to the empty sphere and its concentration is
also 1.

This last term describes the effect of redistribution of charge near the surface, which
is particularly important for surface electronic structure. This charge density near the
surface is far from spherically symmetric. We have taken into account both the monopole
(` = 0, m = 0) and the dipole (̀ = 1, m = 0) contributions. We have also averaged
the multipole moments in each layer and used the technique described by Skriver and
Rosengaard [26] to evaluate the matricesML

pq by a Ewald technique.

4. Results and discussion

In order to compare our results with calculations carried out earlier, we shall first carry
out calculations on a (100) surface of bcc Fe. Earlier, Wang and Freeman [2] used the
LCAO method for the study of the same system. The FP-LAPW method had been used by
Ohnishiet al [4] also to study the (100) surface of bcc Fe. The bulk lattice parameter was
chosen (as in the case of Ohnishiet al) to be 5.4169 au. At this stage no lattice relaxation
was considered. The results quoted below were for the semi-relativistic self-consistent
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Table 1. Magnetic moments in Bohr magnetons/atom.

S S − 1 S − 2 B

Wang and Freeman 3.01 1.69 2.13 2.16

Ohnishiet al 2.98 2.35 2.39 2.25

Sanyalet ala 2.86 2.16 2.38 2.17

Sanyalet alb 2.99 2.17 2.38 2.27

a Supercell calculations.
b ASR calculations.

LSDA TB-LMTO technique in both the supercell and ASR versions. Table 1 compares the
magnetic moment per atom for the three different methods quoted above.

Our central-layer magnetic moment per atom is close to the bulk value given by Wang
and Freeman and slightly lower than that given by Ohnishiet al. All three methods find
Friedel oscillations to be exhibited by the magnetic moment, although the oscillations found
by Wang and Freeman are larger than those found by Ohnishiet al and than those found in
our work. Our magnetic moment at the surface layer is rather small as compared to those
found in the earlier work. However, in these initial calculations (marked with superscript
a in the table) we have not taken into account surface relaxation. Local lattice relaxation
can easily be taken into account within the TB-LMTO-ASR in [27]. We refer the reader to
the details of the relaxation method given therein. A 7–8% relaxation of the surface layer
leads to a surface magnetic moment of 2.99µB/atom which is in good agreement with the
results of both of the earlier studies (marked with superscript b in table 1).

We shall now turn to the study of Fe(100) on the (100) surface of a fcc Ag substrate.
We shall carry out the calculations using two different techniques. First, we shall use the
tight-binding linearized muffin-tin orbital (TB-LMTO) method with a minimal (s, p, d)
basis set for Fe and Ag sites in a tetragonal supercell. Both spin-polarized and non-spin-
polarized calculations were performed on an Fe/Ag multilayer containing a monolayer of Fe,
a monolayer of empty spheres above them and four Ag layers as the substrate. The empty
spheres solve the problem of charge leakage into the vacuum across the free surface. The
results of the calculation show that spin polarization yields a total ground-state energy lower,
as compared with the unpolarized case, by∼0.092 eV/atom, suggesting that the ground state
is magnetic. All of the Fe layers have ferromagnetically arranged moments, with interface
Fe layers having a magnetic moment of∼2.86µB (bulk value: 2.27µB). Also, Fe induces
a ferromagnetic moment in Ag at the interface of∼0.012 µB per atom. The calculation
also suggests Friedel oscillations in the net valence charge in Ag as one goes from the
interface to the bulk in Ag. This is because of moment spillage into the empty spheres.
Such moment spillage outside the surface has also been observed by Ohnishiet al [4].

We shall refine our calculations in three steps. First we shall introduce the local lattice
relaxation technique within the TB-LMTO-ASR [27] to relax the surface layer. We shall
inflate the interlayer distance between the surface layer and the one just below it. Figure 1
shows the variation of the magnetic moment at the surface layer as a function of the
percentage lattice dilatation at the surface. The minimum of the total energy occurs at
around 7.5% dilatation. Here the moment carried by the monolayer of Fe is 3.17µB/atom,
which is not very far from the value of 3.1µB/atom quoted by Bl̈ugel which was based on
FP-LAPW calculations [28].

Next we shall begin with a planar monolayer of Fe on Ag and roughen the monolayer
by alloying it with empty spheres. We shall now use the self-consistent ASR for obtaining
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Figure 1. The surface magnetic moment (in Bohr magnetons/atom) as a function of the
percentage surface dilatation (the dilatation of the distance between the surface overlayer and
the next layer in the substrate).

the electronic density of states and local magnetization as a function of the concentration of
the alloying and the short-range order parameter. We shall begin the LDA self-consistency
procedure by using, to start with, the converged potential parameters from the supercell
calculations on planar surfaces and the equilibrium lattice distances, i.e. with a 7.5% surface
lattice dilatation. With this starting point, the self-consistency is reached much more quickly.

Figure 2(a) shows the local density of states at a point in the bulk Ag substrate (full
lines) and that for a Ag atom on the 100 surface of fcc Ag (without the deposited Fe
overlayer) (dotted lines), obtained by an eight-step recursion process. We have checked that
the recursion does converge in the sense suggested by Haydock [13] and Ghoshet al [19]
of the convergence of integrals of the form∫ E

−∞
8(E′)n(E′) dE′

where8(E) is a well-behaved, monotonic function in the integration range. The Fermi
energy or the chemical potential is calculated from the bulk, and this is shown in figure 2(a).
As expected, the d-band width can be observed to decrease at the surface. This is expected,
as the surface atoms are less coordinated than the bulk atoms (eightfold coordination on the
100 surface as against twelvefold coordination in the bulk). There is also a redistribution
of the spectral weight in the band. It is clear that the amount of charge in a Wigner–Seitz
sphere around a surface atom is less than that around a bulk atom. This extra charge leaks
out into the so-called empty spheres, which carry no atoms but just this leaked charge. By
the time we go down to about four layers below the surface, we begin to get local densities
indistinguishable from the bulk results.

Figure 2(b) shows the local density of states for the up-spin and down-spin electrons in
the Fe overlayer. This is for a perfectly planar overlayer on the 100 surface. As is usual
in bulk Fe and Fe overlayers on noble metals, the majority occupied spin band (here, the
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Figure 2. (a) The local density of states at a Ag atom in the bulk (dotted line) and on the (100)
surface (full lines). (b) The local density of states at an Fe atom in an overlayer on the (100)
surface of a Ag substrate. Both the up-spin and the down-spin densities are shown.

up-spin band) shows much more structure than the minority occupied one (here, the down-
spin band). Since the Ag d bands centred around−0.5 Ryd do not overlap with either of
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the Fe d bands at around−0.2 Ryd and−0.1 Ryd, there is no significant hybridization of
these two, which usually leads to a widening of the Fe d bands and a consequent lowering
of the local magnetic moment. The Fermi energy is that of the bulk Ag and is shown in
the figure.
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Figure 3. The local magnetic moment (dotted line) and averaged magnetic moment (full line)
on an Fe atom in a rough overlayer on the (100) surface of a Ag substrate. The roughness is
modelled by an alloy of Fe and empty spheres. The magnetic moments are shown as a function
of the concentration of Fe in this model alloy. The results are for 7.5% surface dilatation.

We now alloy the overlayer with empty spheres and reconverge the self-consistent ASR.
In figure 3 we show the local magnetic moment on an Fe atom in the rough overlayer as a
function of the Fe concentration in that layer (the dotted line) with 7.5% surface dilatation.
For a concentrationx = 1 of Fe we obtain the local magnetic moment corresponding to
that of figure 2(b). The value of 3.17µB/atom represents a considerable enhancement
as compared with the bulk bcc iron local magnetic moment. The agreement with the
supercell calculations is very close. Blügel has argued [28] that this can be inferred from
the Stoner criterion, because of the narrowing of the overlayer d bands as compared with
the bulk. As we alloy the overlayer with empty spheres, the local magnetic moment on an
Fe atom increases, until in the extreme case it approaches that of an isolated Fe atom at
>3.6 µB/atom. Again we can understand this to a large degree from Blügel’s argument.
We find that the empty spheres hardly inherit any induced magnetization; as a result, as the
concentration of empty spheres increases, the average coordination of Fe atoms decreases,
thus increasing the magnetic moment. In the extreme limit, we obtain the case of an Fe
impurity atom sitting in a sea of empty spheres. Its magnetic moment approaches that of
a free Fe atom. The only difference is caused by its hybridization with the Ag substrate.
Figure 3 also shows (full lines) the averaged magnetization in the overlayer. This is defined
by xMFe+ yMES. SinceMES is negligible, this average overlayer magnetization decreases
almost linearly withx and vanishes atx = 0. The two types of magnetization shown in the
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Figure 4. The oscillation of the magnetic moment on different layers of an Fe overlayer on the
(100) surface of a Ag substrate.

figure are measured by local magnetic probes and global magnetization experiments.
Figure 4 shows the local magnetization at atoms in different layers. We clearly see that

there is an induced magnetization in the Ag atoms of the topmost substrate layers. The
magnetization oscillates layerwise into the bulk.

Figure 5 shows the variation of the local magnetic moment at an Fe site (the dotted
line) and the averaged magnetic moment in the overlayer as a function of the Warren–
Cowley short-range-order parameter for (a)x = 0.9 and (b)x = 0.75. We note that when
the Warren–Cowley parameter indicates phase segregation, the magnetic moment shows an
increase. We may understand this behaviour from the following argument.

For α > 0 the tendency is towards phase segregation. Islands of Fe (in our case,
clusters of nearest-neighbour atoms) precipitate in a sea of empty spheres (particularly in
the low-Fe-concentration regime). This situation mimics the islands and pyramids observed
for actual MBE-deposited surfaces. A simple calculation with an isolated five-atom nearest-
neighbour cluster present on the surface shows that the local density of states in the cluster
is much narrower than a homogeneous distribution of Fe atoms on the surface. This leads to
a larger magnetic moment/atom on the cluster. The maximum enhancement of the magnetic
moment due to short-ranged clustering is around 3%.

Clustering enhancement of the magnetic moment competes with the ‘poisoning’ effect.
The interfaces are never sharp; there is always an interdiffusion of substrate atoms into the
surface layer and vice versa. In our final calculation, we have taken a perfectly planar (non-
rough) monolayer of Fe on the (100) surface of fcc Ag and allowed up to 10% interdiffusion
of Fe and Ag atoms into the surface layer and the one just below it. The surface layer is
then an FexAg1−x alloy and the next layer a AgxFe1−x alloy. The following table, table 2,
shows the magnetic moments in the surface layer for different values ofx.
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Figure 5. The surface magnetic moment (in Bohr magnetons/atom) as a function of the Warren–
Cowley short-range-order parameter for (a) 90% Fe, 10% empty spheres and (b) 75% Fe, 25%
empty spheres in the surface overlayer, with 7.5% surface dilatation.

Table 2. The lowering of the surface magnetism due to the ‘poisoning’ by the substrate. All of
the magnetic moments are inµB/atom.

x Averaged magnetic moment Fe magnetic moment Ag magnetic moment

0.95 3.02 3.18 0.014
0.90 2.86 3.17 0.017

We notice that the depletion of the magnetic moment due to the ‘poisoning’ by the
substrate is about 4.5%. In an actual experimental situation, the enhancement effects due to
the surface lattice dilatation and clustering and the depletion effect due to ‘poisoning’ are
present simultaneously. We have an idea of how to determine the lattice dilatation. Surface
roughness may be probed with local techniques like STM. If we could determine the amount
of interdiffusion, we would be in a position to quantitatively predict the surface magnetic
moment. In conclusion, we suggest that the augmented-space recursion coupled with any
first-principles and accurate technique which yields a sparse Hamiltonian representation
(like the TB-LMTO or the screened KKR method) can take into account surface roughness,
short-ranged clustering, surface dilatation and interdiffusion effects accurately, and it would
be a useful methodology to adopt.

Acknowledgments

AM, GPD and BS would like to thank the ICTP and its Network Project and the DST, India,
for financial support of this work. PB would like to thank the CSIR, India, for financial
assistance. The collaborative project between the University of Warwick and the S N Bose



The electronic structure of rough epitaxial overlayers 5779

National Centre is also gratefully acknowledged. We would also like to thank I Dasgupta
and T Saha-Dasgupta whose bulk LDA self-consistent codes formed the basis of this surface
generalization.

References

[1] Feder R (ed) 1985Polarized Electrons in Surface Physics(Singapore: World Scientific)
[2] Tersoff J and Falicov L M 1981 Phys. Rev.B 24 754

Victoria R H, Falicov L M and Ishida S 1984Phys. Rev.B 30 3896
Pastor G M, Dorantes-Davila J and Bennemann K 1989Phys. Rev.B 40 7642
Riedinger R, Habar M, Stauffer L, Dreysse H, Leonard P and Mukherjee M 1989Phys. Rev.B 39 13 175
Dorantes-Davila J, Vega A and Pastor G 1993Phys. Rev.B 47 12 995
Wang C S and Freeman A J 1981Phys. Rev.B 24 4364

[3] Fabricius G, Llois A M, Weissman M and Khan M A 1994 Phys. Rev.B 49 2121
[4] Wimmer E, Krakauer H, Weinert M and Freeman A J 1981Phys. Rev.B 24 864

Ohnishi S, Freeman A J and Weinert W 1983J. Magn. Magn. Mater.31–34889
Ohnishi S, Freeman A J and Weinert W 1983Phys. Rev.B 28 6741
Ohnishi S, Freeman A J and Weinert W 1984Phys. Rev.B 30 36

[5] Skriver H L 1984 The LMTO Method(Berlin: Springer)
Peduto P R, Frota-Pessoa S and Methfessel M S 1991Phys. Rev.B 44 13 283
Khan M A 1993Appl. Surf. Sci.65 18
Khan M A 1993J. Phys. Soc. Japan62 1682
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[28] Blügel S 1995Lectures in Magnetism on Surfaces(Trieste: ICTP)


